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SUMMARY 
A numerical method for designing open channel expansions and contractions to give a specified depth 
distribution is presented. The design of channels with prescribed depths-velocities is important because, 
amongst other things, boundary layer separation can be avoided. Cavitation can also be avoided by 
prescribing depth-velocity values that do not exceed certain critical values. The numerical scheme involves 
iteration between the direct solution (analysis) of a newly developed numerical algorithm and an inverse 
(design) solution. The governing system of PDEs is transformed into an equivalent system applied over 
a square grid network. The design procedure, which is based on two levels of design, yields a new set of 
co-ordinates for the channel geometry. This new geometry is used in the next iteration of the direct solution. 
Various channel expansions and contractions have been designed for supercritical flow conditions. Com- 
puted results also show how friction affects the channel shape. A numerical experiment has been carried out 
to establish the design capabilities. The new numerical procedure is a comparatively fast and reliable method 
for the purpose for which it was set forth. The method can be used either to generate entire new channel 
shapes or to modify regions of side walls. 

KEY WORDS Hydraulic design Expansions-contractions Supercritical depth-averaged free surface Row 
Marching finite volume method 

INTRODUCTION 

In the motion of fluids in open channel configurations there are two general types of problems 
which must be answered. The first problem, which is the direct solution (analysis), requires the 
fluxes perpendicular to the side wall surfaces to be zero, while the velocities and flow depths of the 
flow field are the unknowns which have to be calculated. The second problem, which is the inverse 
solution (design), requires the Dirichlet boundary conditions to be applied, i.e. a flow distribution 
along the boundaries is specified and the shape of the boundaries must be determined. 

Usually a design process involves the use of physical and/or numerical models to resolve the 
fluid properties adequately. Physical models considerably reproduce the details of the actual 
hydraulic structure but are usually subject to certain limitations of scale modelling. On the other 
hand, numerical models, which during the last 20 years have been dominating research methods, 
are also restricted to the validity of the governing equations representing the physical behaviour. 
However, the combined effects of the physical and numerical approaches can lead to significant 
designs acceptable from the engineering point of view. A computer-aided design will improve the 
performance of any hydraulic structure while at the same time shortening the amount of human 
effort needed for such a design. Until recently such designs were made iteratively by successive 
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modifications of the side wall geometries (cut and try) followed by direct (analysis) calculations. 
The design process was terminated soon after some acceptable results were derived. However, 
such a process is extremely time-consuming, resulting in considerably increased design costs. 
Alternatively, it is more efficient to use an inverse method, which, if it is directly linked with the 
direct solution, will make it possible to derive the proper side wall geometry from a flow depth 
distribution. 

Expanding and contracting sections are usually utilized between channels of different cross- 
sectional areas in order to avoid undesirable flow conditions, e.g. cavitation, and to minimize 
head losses. Sometimes these sections are called transitions. Common types of transitions are inlet 
and outlet sections between canals and flumes, between canals and tunnels and between canals 
and inverted siphons.' In a transition there is nearly always appreciable change in the flow depth 
with subsequent alterations in flow velocities. Whenever supercritical flows are occurring, 
a change in alignment of the transition walls creates standing wave patterns, overtopping, 
excessive structural loading and non-uniform flow in the downstream region. However, slight 
alterations in curvature of the side walls constitute a delicate problem which needs special 
attention. 

One of the most common causes of spillway failures has been the improper design of steep 
chutes. In chute design it is usually required to determine the dimensions that will provide for 
a given discharge. The requirements for the correct shaping of the chute side walls are often 
overlooked. Whenever the crest length of a spillway is greater than the width of the energy 
dissipator, the chute must converge in the downstream direction.2 However, the flow in a chute is 
always supercritical and the design of the shape in plan of the chute side walls is a very difficult 
problem. 

Also, channel expansion in supercritical flows occurs frequently at places where flow emerges at 
high speed, e.g. from a closed conduit or a sluice gate. A satisfactory design for the expansion is of 
practical importance, since if an expansion is designed to diverge too rapidly, the flow will fail to 
follow the boundaries; on the other hand, if the expansion is too gradual, waste of materials will 
result and finally, if the local disturbances produced by improper boundary geometry are of great 
height, the walls will fail to confine the flow. 

While it is true that nearly all analysis codes can be converted into design codes, from a general 
literature survey it is apparent that design procedures for two-dimensional free surface flow 
hydraulic structures are virtually non-existent. Most of the experience of design codes comes 
straight from compressible flow theories. Therefore, to demonstrate the experience to date, 
a quick literature survey is made on numerical designs dealing with compressible flows. Singh3 
derived a time-marching method which generates blade profiles in a cascade corresponding to 
a prescribed pressure distribution around blade surfaces. Tranen4 produced a numerical method 
for the design of two-dimensional aerofoil sections with a prescribed transonic pressure distribu- 
tion. Soulis5 presented a numerical method for the design of thin turbomachinery blades with 
specified whirl velocities across the blade span. The method was used to design free vortex thin 
blades for turbines and compressors operating in incompressible and compressible (subsonic) 
flow regimes using the potential function concept. Stanitz6 designed two-dimensional channels 
with a specified velocity distribution along the channel walls for both incompressible and 
compressible flows. Brown and Eskandarian' derived a method for propulsion nozzle design 
based on Tranen's method. A mass flux balance was written to calculate the displacements of the 
streamlines across the nozzle solid bodies. A similar approach is applied by Hart and Whitehead* 
in order to design two-dimensional cascades of turbomachinery blades based on finite element 
analysis. Tong and Thomkinsg have presented a finite volume approach for the design of 
shock-free or strong passage shock turbomachinery cascades. Finally, Borges" presented 
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a three-dimensional approach for the design of an impeller of a low-speed radial inflow turbine. 
His approach is similar to that reported by S o ~ l i s . ~  

Rouse et d.," as early as the late 1940s, obtained practical results which were found useful in 
the preliminary design of channel expansions in supercritical flow. Their results refer to abrupt 
expansions, efficient gradual expansions and generalized boundary curves for channel expan- 
sions. Ippen" describes the mechanics of supercritical flow for converging boundaries. His basic 
formulation and design procedures have been incorporated into a computer spillway design 
procedure by Traubert.' Knapp,I4 in order to eliminate or reduce superelevation and cross- 
wave disturbance patterns in curved channels, suggested various simple design methods for 
banking, multiple curved vanes, easement curves and diagonal sills. Finally, Bauer and BeckI5 
describe simple rules for the design of side walls in spillway chutes. 

A two-dimensional design method with prescribed flow depths-velocities along the side walls is 
presented. The numerical scheme involves iteration between the direct solution of a newly 
developed numerical algorithmI6 and an inverse solution. The analysis code solves the governing 
equations on a non-orthogonal co-ordinate system. Therefore irregular flow regions can be 
analysed easily and efficiently. All applications refer to supercritical flow conditions through the 
flow field. The method reported herein was developed in our Computation Laboratory during 
1990. The method was coded in FORTRAN and run on a MicroVax I1 as well as on a VAX 8350 
computer. 

ANALYSIS 

Flow equations 

Under the assumption of homogeneous, incompressible, two-dimensional, viscous flow with 
hydrostatic pressure distribution, the governing free surface flow equations for the physical 
domain in the Cartesian co-ordinate system are 

W, + Fx+ Gy = D, (1) 
where 

The system of equations (1) is of the conservative form capable also of dealing with hydraulic 
jumps. In the above system h is the water depth, u and v are the velocity components along the 
axial (x) and tangential (y) flow directions respectively, g is the acceleration due to gravity, 
Sox and Soy are the channel slopes in the x- and y-direction respectively and Sfx and Sfy are the 
respective friction slopes, which are defined as 

where n is the Manning flow friction coefficient. 
The essence of the proposed scheme is that quadrilaterals in the physical domain will be 

separately mapped into squares in the computational domain by independent transformations 
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"upper slde-wall 

flow 

Figure 1. Sparse computational grid and mapping 

from Cartesian (x, y) to local (5 ,  q) co-ordinates as illustrated in Figure 1. If xi  and yi are the 
Cartesian co-ordinates of the corners of a finite volume, then the co-ordinates of any point of this 
finite volume can be expressed as 

4 4 

x =C Ni xi, y = C  Niyi, (5 )  
1 1 

where Ni are the shape functions associated with the finite volume nodes. The shape functions are 
defined in terms of a local non-orthogonal co-ordinate system ( 5 ,  q )  as 

N1 = (1 - 5)(1 - qY4, Nz = (1 + 5M- qY4, N3 = (1 + <) ( I+  qY4, N4 = (1 - 0(1+ qY4. 

(6) 
Let J- '  be the transformation matrix from the physical to the computational local co-ordinate 
system: 

The following relations hold:' 

Wi + F; + Gh = D', 

where 

W ' = J - '  [I:]. hUu+5,gh2/2 , (9) I hU 

hUv + 5,gh2/2 
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(10) 

J - '  is the determinant of the matrix J - I ,  U and V are the velocity components in the 
computational domain, while the velocity components u and u in the physical domain are 

[ :]=J-l[ "y] 

Boundary conditions 

At the upstream boundary the transverse flow direction component of velocity is specified. 
A uniform (across the width) flow depth is also specified along with the total available head. At 
the downstream end no boundary conditions are required to be enforced. All the above 
conditions are applicable to supercritical flow throughout the field. When the condition of no 
flow across the side walls is applied, the mass fluxes are taken across the faces of the boundary 
finite volume which is bounded on one face by the solid body. Thereafter the flux components hu 
and hu for the side wall surfaces are recalculated requiring the component of velocity normal to 
the solid surfaces, qn, to be zero. 

Numerical procedure 

a control volume A V  of unit height and for a time step At as 
The two-dimensional flow equations (8) may be written as conservation form equations for 

-A(J-'h)=[A(J -'hU)Aq+A(J-'hV)A<]At/A<Aq (continuity), (13) 

x At/A<Aq - J -'gh(Sox- Sfx)At ((-momentum), (14) 

x At/A<Aq - 3  -'gh(SoY-Sfy)At (q-momentum). (15) 

(16) 

- A ( J  -'hu)= (A[J - ' ( ~ U U  + <,gh2/2)]Aq + A[ J - ' ( h  VU + qxgh2/2)]A<} 

-A( J - ' h ~ ) =  {A [ J  - ' ( ~ U U  + <,gh2/2)] Aq + A[J - ' ( ~ V U  + qygh2/2)] A t }  

Thus for the mass flux an XFLUX at i ,  j is defined as 

(XFLUX)i, j= [( J - 'hU)i ,  j + ( J  - ' hU)i+ 1, j]Aq/2, 

while the YFLUX at the same point is defined as 

(YFLUX)i, j= [(J - 'h  V)i, j + ( J  - ' h  V)i, j- 1 ]A</2. 

The terms A ( J - ' h U )  and A(J- 'hV)  in equation (13) are defined as 

A(J -'hU)=(XFLUX)i, j-(XFLUX)i, j -  1, 

A(J - ' h  V )  = (YFLUX)i+ 1. j-(YFLUX)i. j. 

Similar differencing is adopted for the <-momentum and q-momentum flux balances, equations (14) 
and (15) respectively. The governing flow equations are solved in the order: continuity, q- 
momentum, <-momentum. The bottom slopes Sox and Sop are precalculated and stored, while the 
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friction slopes Sfx and Sf, are updated at each time step. The changes A ( J - ' h ) ,  A ( J - ' h u )  and 
A(J -'hu) of the LHS of equations (13)-(15) respectively are used to estimate the new values for h, 
u and u. Thereafter a new iteration step is performed. 

DESIGN 

Boundary conditions 

When initiating the design process, a starting geometry must be residing in core (see Figure 2). 
It is usual practice to estimate the initiating side wall geometry as closely as possible to the 
expected one. However, this is not always possible and therefore an arbitrary shape is defined. 

IMMl 

j -2 

old grid 

old geometry \ 
\ 

\ 
'\ 

'\ 

\ 
\ 

\ 

Figure 2. Notation for wall displacements 
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This geometry is usually relaxed before it is incorporated into the design procedure. A properly 
guessed initial geometry will decrease the amount of CPU time needed for design and at the same 
time will certainly avoid failure in the numerical procedure. It is also necessary to specify as data 
the inlet and outlet widths of the structure under design. These widths remain fixed throughout 
the course of the iterations. The inlet angle of the side walls under formation remains fixed. The 
outlet angle of the structure is initially given a value in order to start the iterations. This angle is 
permitted to change. The design procedure needs the distributions of Sox and Soy throughout the 
computational field. The Manning flow friction coefficient n is also specified. Finally, the axial 
positions of the inlet and outlet ends are held fixed; thus the axial distance between the inlet and 
outlet is fixed. Of course, the real lengths of the side walls change as the modified geometry tends 
to satisfy (through the calculated flow field) the required flow depth distribution. Table I shows 
the solid boundary conditions used in the design. 

At a given inlet total available head Hol,  water flow depth hl  and velocity component u1 
a desired water flow depth distribution along the channel side walls is prescribed. Thus the flow 
discharge through the hydraulic structure is determined. In the current method a prescribed value 
of depth, hprcr is allocated at each grid point of the ‘upper’ (i=IM; j =  1, J M )  and ‘lower’ (i= 1; 
j =  1, J M )  mobile side walls of the flume (see Figure 3). With minor computing code modifications 
it is possible to prescribe many possible depths along the axial distance of the hydraulic structure 
under design, which in turn satisfy particular design needs. The outlet flow region remains totally 
free from any conditions. Emphasis must be put on the fact that all the above flow conditions as 
well as the associated design procedures are primarily intended for supercritical flow conditions. 
Table I1 shows the fluid boundary conditions used in the design. 

Table I. Solid boundary conditions needed for design 

Geometry condition Fixed Allowed to change 

S O X  

S O ,  

n (Manning) 
Inlet width 
Outlet width 
Inlet position x, y 

K Outlet position 

i 
i 

i 

i 
i 

Inlet angle J 
Outlet angle I 
Initial geometry i 
Side wall geometry i 
Computational grid i 
Axial grid locations i 
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Figure 3. Definition of a typical channel expansion geometry 

Table 11. Fluid boundary conditions needed for design 

.(bottom elevation) 

Flow condition Fixed Allowed to change 

H o  1 

hl 

01 

hprc(i= 1 ;  j =  1 ,  J M )  

h,,,(i=IM; j =  1 ,  J M )  

qpre(i= 1; j =  1 ,  J M )  

qpre( i=IM; j = l ,  J M )  

h ( i=2 ,  I M M 1 ;  j = 2 ,  J M )  

u ( i=  1 ,  I M ;  j = 2 ,  J M )  

u ( i = l , I M ;  j = 2 ,  J M )  

s,x 

SfY 

i 
J 
J 
J 
J 
i 
J 

i 
J 
i 
i 
J 
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Determining the new channel geometry 

In the analysis the concept of tangential velocity along the walls is enforced. In the design stage, 
to provide the Dirichlet boundary condition, the prescribed flow depth distribution is enforced. 
In the current research work this is a twofold numerical procedure. 

In theJirst scale, on the mobile boundaries, new streamline positions are found from the flow 
angle 8. This flow angle is calculated from the equation 

tan 8 = u/v, (20) 
where u and u are the current iteration step velocities along the ‘upper’ and ‘lower’ surfaces 
respectively. The calculation starts at the inlet position and is based on the fact that the axial 
differencing A x ( j )  is held constant (see Figure 2 as well as Table I). The displacements Ay(j) are 
calculated from 

(21) 
for each 8. These displacements are added to the old ys of either mobile wall in order to yield the 
new ys. The current version of the computational grid utilizes grid lines perpendicular to the axial 
direction. Thus at each grid point of the side walls (see Figure 2) new positions are calculated. 
However, this procedure is only applied after a certain number of iterations, usually 40 or so, 
whenever there is sufficient indication of convergence of the analysis code. Numerical experi- 
mentation has shown that sufficient convergence means that the percentage average (over the 
flow field) change in the axial velocity u from the previous iteration is less than 0.001 Yo. At the 
same time the maximum and average values of shifts of the mobile boundaries are calculated. If 
these values are higher than 0.005% (maximum) or O*OOOl YO (average) of the outlet width, then 
the analysis is repeated again and again until the values become lower than 0.005% and O.OOOl%. 

The second scale is initiated soon after the previously mentioned criterion is satisfied. As the 
solution converges, the shift of the streamlines becomes negligible. The iterations are repeated and 
the resulting flow depths are compared with the prescribed hprc set forth initially. If the maximum 

Ay(j) = A x ( j )  tan 8 

10 -’ 

0 500 ‘1000 1500 2000 2500 

iterations 

Figure 4. Convergence history of Design 2 
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difference between these values is higher than 0.001 YO of the inlet total head Hol or if the average 
difference between these values is higher than 0.0001% of Ifol, then a new local tangential 
displacement (DISPL) of the mobile side walls is calculated3 according to 

DISPL = (Ax2 + AY’ )’ 4 - qpre 

AX’IALEF ’ 

where 1 is the inlet width (see Figure 3), ALEF is a factor which usually takes values between 0.1 
and 1.0, q is the current value of the velocity J(u2 + u’) and qpre is the prescribed velocity along 
the mobile walls. The value of qprc is calculated from the total available head as well as from the 
flow depths at each grid point. This calculation is performed using Bernoulli’s equation. Two 
versions of this equation are applied. The first version refers to ideal flow while the second one 
refers to inclined flow with friction. As the solution converges, the differences q - qpre become 
negligible and subsequently the calculated displacement also becomes negligible. If the second 
criterion is satisfied, i.e. if the maximum or average difference between h and hpre becomes less 
than 0.001 YO or 0.0001 % respectively of Ifol, the design procedure is terminated. The utilization 
of two convergence criteria was found to be necessary in order to eliminate local error instability. 
Figure 4 shows the mean (along the mobile walls) h-hpre variation with the number of iterations 
for a typical application (Design 2). 

Computation 

The flowchart of the computational scheme is given in Table 111. 
After a specified number of iterations of the direct solution, subsequently called NDS, the 

numerical scheme incorporates the design procedure. This number depends on (a) the type of 
supercritical flow, (b) the geometrical complexity of the initial configuration and (c) the finally 
sought geometry. This number is typically 40 or so iterations, when there is sufficient indication 
that the change in the flow properties from the previous iteration values is small. Figure 5 shows 
the effects of this number on the total number of iterations required for Design 2. Values of NDS 
higher than 40 delay the convergence rate for nearly all application examples. On the other hand, 
values of NDS less than 40 prevent the settling down of the flow field before the incorporation of 
the design process. As a result the numerical solution breaks down. Numerical experimentation 
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1.20 

1 .OO 

0.80 

0.60 

0.40 

0.20 

0.00 
0 1000 2000 3000 4000 5000 6000 7000 81 I0 

i terat ions 
Figure 6. The ALEF factor of equation (22) can accelerate the convergence solution 

has shown that in order to achieve convergence, the design procedure needs to be incorporated 
15-30 times. When the initial geometry yields flow depth distributions with considerable differ- 
ences from the prescribed values, it is found to be necessary to relax the currently estimated 
geometry before it is used in the iteration of the direct solution: 

(23) 

where the overtilde denotes the current value and u is a relaxation factor. Thereafter the new 
computational grid is formed. New Jacobians and partial derivatives xy, x,,, y, and y, must be 
calculated for each finite volume of the new flow field. 

As the solution advances, new flow directions are calculated for the mobile walls. The new wall 
positions are considered to be streamline-like. Of course, in the new position some mass flow is 
crossing through the mobile walls. This is due to the fact that the solution has not yet fully 
converged. However, as the solution proceeds, this mass flux becomes small. Eventually, the new 
geometry freezes and therefore a test is needed to ensure that the design target has been fulfilled. 
The previously mentioned design criteria are initiated through the subroutines DES1 and DES2 
(see Table 111). At the very end the differences between q and qprc become negligible and the whole 
solution procedure yields a frozen geometry, the one sought. The effect of the ALEF factor 
(equation (22)) on the local displacement and eventually on the convergence rate for a typical 
application (Design 2) is shown Figure 6. A lower limit of ALEF exists, 0.20, below which the 
numerical solution breaks down. A typical computational grid is formed by 16 x 50 (trans- 
verse x axial) points. Denser computational grids did not essentially change the computed 
results. For a typical design the amount of required CPU time on a MicroVax I1 computer was 
1380 s. Several test cases were carried out on a PC. For the majority of the presented design 
examples the method proved to be reliable and fast. The proper selection of w, ALEF and 
I accelerates the solution convergence rate provided that extreme values are avoided. 

yi,j  n + 1 -  -wji,j+(l-m)yy,;l ,  i=I ,ZM;  j = l , J M ;  

DESIGN EXAMPLES 

In order to validate the design calculations, it was desirable to know in advance what geometry 
each of the prescribed flow depths corresponds to under specified inlet flow conditions. Thus it 
would have been immediately apparent whether or not the design procedure resulted in the 
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-6  Is max Ay>O.OOsX of outlet 
width and can number of 
lteratlons he dlvlded by 4 0 .  

Table 111. Flowchart for design process 

~ 

yes 

Read data 1 

I 

no 

' 7  Is IIUU( h y ~ 0 . 0 0 5 %  of outlet 
width and can number of 

Calculate initial flowfleld 

' 8  Set flow depths on the mob1 
le walls equal to prescrlb- 
ed values 

i 

- 9  Solve momentum equations 
to obtain velocities v 
and u L 

-11  Set flow depth on the mobl- 
le walls equal to prescrib 
ed values - 

'12 Solve momentum equations 
to obtain velocities v 
and u - 

-13 Evaluate new locatlons for 
the mobile walls from 
new streamline angles 



~ 

J L 
I 

16 Set flow depth on the mob1 
le walls equal to prescrib 
ed values 

bes 

I 
120 Apply Eq. (221 L 
21 Evaluate new locations of 

the moblle walls 

22 Form the new computation 
a1 grid 

I 

]23 co to step number 4 I 

I STOP t-t- 

13 

desired channel geometry. In fact, the computer code development was done against a simple 
expansion design (Design 2) where the side walls comprised straight surfaces. Emphasis must be 
put on the fact that for all tested designs the cross-section is rectangular. Thus any programming 
error would have been easily identified since either the solution would diverge or it would have 
ended up in a wrong design. Table IV shows the geometrical-physical conditions and the results 
of the applied test cases in which flow friction is present. 

Inlet transition design (Design I )  

In the first test case it was required to design a symmetrical inlet structure connecting a canal to 
a flume. The hydraulic properties are given in Table IV. The initial geometry is shown in Figure 7, 
while the desired and derived flow depths are shown in Figure 8. Hinds” presented a simple 
numerical procedure for one-dimensional transition designs. The calculated results using the 
method of Hinds are compared with the current method results in Figure 7. Some differences are 
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__... Hinds method 1171 _ _ _  Inltlal g e o r t r y  - daslgned gaowtry 

W 
0.00 l . O O  1 

l x 
-1 .oo 

Figure 7. Comparison between present and Hinds’” (1D) method designed inlet transition geometry at Fr,  =2.11. The 
figure also shows the initial geometry of the current method 

* * . 
0 0 0 derlved rlou depths 

prescribed flow depths 

- 
E 
4 

I: 

2.00 

1.80 

1.60 

1.40 

1.20 

1 .oo 
0.00 1 .oo 2.00 3.00 4.00 5.00 6.00 

x (m> 

Figure 8. The direct solution using the designed geometry of Figure 7 compared with the prescribed flow depths 

apparent. It is believed that these differences are due to the fact that Hinds’ method is a one- 
dimensional approach while the test case under design is clearly a two-dimensional problem. The 
comparison also serves as a guideline for estimating the errors between one- and two-dimensional 
design approaches. 

Straight line expansion design (Design 2) 

The second test case was a straight line expansion design at an inlet Froude number of 2.0. It is 
on this design that the computing code development was mainly done. It was decided to deform 
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2.00 -- 

0.00 

only the ‘upper’ side wall. The other one remained identical to the finally sought solution. 
However, the deformation from the correct solution was made severe in order to test the 
computing code capabilities. The initial geometry of the expansion is shown in Figure 9. The 
desired water depth distributions along the ‘lower’ and ‘upper’ side walls are shown in Figures 
1qa) and lqb )  respectively. The designed geometry is shown in Figure 9. Some convergence 
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Figure 9. Initial and designed geometries for the straight line expansion design example at Fr ,  =2.0 
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Figure lqa). The direct solution using the designed geometry of Figure 9 compared with the prescribed flow depths along 
the lower mobile wall 
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I 
00 

Figure lqb). The direct solution using the designed geometry of Figure 9 compared with the prescribed flow depths 
along the upper mobile wall 

histories are shown in Figures 4-6. In order to verify that the converged geometry is satisfactory, 
it was decided to run the analysis code using the designed geometry. These results are shown in 
Figures 10(a) and lqb)  for the ‘lower’ and ‘upper’ side walls respectively. The comparison is 
considered to be very satisfactory. Slight differences, of the order 1.0%, appear at the ‘upper’ 
expansion side wall in the last quarter-region (see Figure 10(b)). 

15.00 7 

0.00 2.50 ~~, 
-2.50 

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 

x ( m >  
Figure 1 1 .  Initial and designed geometries for the Rouse er a/.” expansion design example at F r ,  =2.0 
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Rouse et al. expansion design at  Fr = 2.0 (Design 3 )  

design ability of the proposed method. The actual channel geometry is given by the formula 

J. V. SOULIS AND G. A. PSONI 

The gradual channel expansion reported by Rouse et al." was used to further evaluate the 

y/b = +(x/b 21312 + ;, (24) 

* - wcscrlbed f l o w  dcoths 

Figure 12(a). The direct solution using the designed geometry of Figure 11 compared with the prescribed flow depths 
along the lower mobile wall 

30 

Figure 12(b). The direct solution using the designed geometry of Figure 11 compared with the prescribed flow depths 
along the upper mobile wall 



DESIGN OF CHANNEL EXPANSIONS AND CONTRACTIONS 19 

where bl is the channel width at  entrance. Figure 11 shows the initial geometry. This geometry 
was wrongly estimated on purpose. The prescribed flow depths along the 'lower' and 'upper' side 
walls are shown in Figures 12(a) and 12(b) respectively. These water distributions are the results of 
the analysis code (see also Reference 16). The resulting (designed) geometry is shown in Figure 11. 
Once again, in order to verify that the converged geometry is satisfactory, it was decided to run 
the analysis code using the designed geometry. These results are shown in Figures 12(a) and 12(b). 
Some differences appear in the first quarter-region of the 'upper' side wall (see Figure 12(b)). The 
comparison is considered to be satisfactory. 

Rouse et al. expansion design at Frl  = 4.0 (Design 4 )  

When the inlet Froude number is raised to 40, a design is sought which will yield the depth 
distributions of Figures 14(a) and 14(b). The final (designed) geometry is shown in Figure 13. The 
comparisons between the desired and finally produced depth distributions shown in Figures 14(a) 
and 14(b) are again satisfactory. Designs 3 and 4 are demanding test cases. To facilitate the 
convergence procedure the initially set forth geometry of Design 4 was close enough to the 
expected one (see Figure 13). 

Constant depth contraction design (Design 5) 

All the previously reported design examples refer to supercritical expansions. The final test case 
reported herein is a contraction design. In some hydraulic structures it is required that the flow 
depths be constant and equal to a specific value. In highly inclined supercritical flows, as in the 
case of steep chutes, the velocity increases in the downstream direction. Flow friction forces do 
not seriously alter the velocity increase. As a result the flow depth decreases. If constant depths 
are required, then the geometry must gradually contract. However, this is a delicate problem and 
a proper solution is sought. Figure 15 shows the initial geometry of a steep chute design required 
to yield a constant flow depth of 0 6  m. The figure also shows the resulting (designed) geometry. 

x (m> 

Figure 13. Initial and designed geometries for the Rouse et al." expansion design example at Fr, =42) 
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Figure 14(a). The direct solution using the designed geometry of Figure 13 compared with the prescribed flow depths 
along the lower mobile wall 

... Prescribed Flow depths 
0 9 9 d e r l v e d  Clou depths 

x (m) 
(bl 

Figure 14(b). The direct solution using the designed geometry of Figure 13 compared with the prescribed flow depths 
along the upper mobile wall 

Figure 16 shows the results of the analysis code using as geometrical data input the designed 
geometry of Figure1 5. Again the comparison is equally satisfactory. 

CONCLUSIONS 

A general numerical method of design has been developed for two-dimensional channel expan- 
sions and contractions with prescribed depths along the channel walls. It is a fast and reliable 
design procedure suitable to run interactively on a minicomputer or a PC. The amount of input 
data has been kept to a minimum. The marching finite volume analysis code greatly facilitates the 
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Figure 15. Initial and designed geometries for the constant flow depth design example 

Figure 16. The direct solution using the designed geometry of Figure 15 compared with the prescribed flow depths along 
the lower mobile wall 

straight application of the design procedure. Once the co-ordinates of the new (modified) 
geometry have been calculated, the formation of the new grid is automatically calculated via the 
analysis code. The developed method has been applied to generate the geometrical shapes of 
various channel expansions and contractions operating in supercritical flow. In order to confirm 
the generated side wall geometry, the co-ordinates of this geometry were used as input data for 
the analysis code under identical flow conditions. The resulting depth distribution was in very 
good agreement with the prescribed depth distribution. Numerical experimentation has shown 
that the amount of CPU time required for design is strictly dependent upon the initial geometry 
guess. For a typical problem the design procedure needs to be incorporated 20-30 times in order 
to converge to an acceptable geometry. The method can be used either to generate entire new 
channel side walls or to modify regions of side wall surfaces. 
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